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1 Introduction
System designers, operating system programmers and
application developers are equally challenged by the ad-
vent of exascale computing systems. Fundamental con-
cepts have to be revisited and emerging issues often de-
mand entirely new approaches to succeed. To keep the
consumption of limited energy resources and the associ-
ated costs at a minimum it is essential to build energy-
efficient exascale systems. For this it is required that all
parties involved are working towards a common goal in
order not to impede each other.

To increase energy efficiency, current proposals are
mostly targeting at runtime power management concepts
which control exascale applications. In contrast to this,
we propose a tooling infrastructure for energy-aware
programming which is tightly integrated into the design
process of exascale computing systems. Early during
each development phase our approach assists system de-
signers and application developers to make energy-aware
design decisions targeting at improving the energy effi-
ciency of the overall system.

2 Motivation
Today’s operating systems have sophisticated subsys-
tems responsible for runtime power management and
careful resource consumption to increase the overall sys-
tem’s energy efficiency. Usually this is achieved by ex-
ploiting energy saving features exposed by underlying
hardware components. Energy saving features such as
dynamic voltage and frequency scaling [1, 2] and device-
specific sleep states [3, 4] are common approaches and
well-studied areas in both academia and practice. In con-
trast to runtime-driven approaches, energy-aware com-
pilers optimize code prior to execution. Loop optimiza-
tions [5, 6] and architecture-specific instruction set ex-
tensions [7, 8] have proven to be effective.

Individual nodes of large-scale distributed systems
perform local power management decisions to achieve
a local optimum with regard to energy efficiency. Dis-
tributed power management components make sure that
a global power management policy is enforced jointly
across all participating nodes. Resources of individual
physical nodes are being utilized optimally by migrating
processes and aggregating work.
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From a global point of view, distributed processes co-
operatively pursue a common goal for saving energy by
reacting on dynamic runtime aspects of the system. Low
workload situations are handled by consolidating work
first, which is then followed by taking down spare com-
puting nodes. Vice versa, excess load is encountered by
distributing work to an increased number of nodes. For
efficient power management components, exascale com-
puting systems will require fine-grained control over de-
vices [9]. Power management capabilities need to reach
out to many components of the system, besides compo-
nents such as CPUs this includes network infrastructure
components required for operation. This implies that to-
day’s runtime power management approaches need to be
scaled to the dimension of exascale systems. However,
this alone will not be enough.

The tremendous energy requirements of exascale sys-
tems [10] need to be addressed at different layers and
demand for a holistic approach: application and operat-
ing system software co-design. To achieve this, we pro-
pose to augment the design processes of both, operating
system software and application software with so-called
energy consumption indicators which system designers
and developers can rely on during development. The
importance of such measures is based on the fact that
energy consumption depends on the actual application
logic which is a result from design decisions during soft-
ware development. Assuming that developers are being
supplied with meaningful energy consumption estimates
for program code (e. g., within the development environ-
ment), their knowledge could be exploited to reduce the
resulting program code’s energy footprint.

Much the same as unit tests are used to automatically
verify the correctness of program code, and static anal-
ysis tools are used to verify timing constraints, energy
consumption indicators can be used to check whether
program code meets certain energy consumption con-
straints. Designing energy-efficient exascale systems will
require corresponding tooling support, so that develop-
ers can rely on energy consumption indicators in order to
optimize program code of system software for energy ef-
ficiency. Usually this implies restructuring the program
logic or choosing a different algorithm to achieve the re-
quired functionality in a more energy-efficient manner.
Further, operating system runtime components can ex-
ploit this a priori knowledge for switching into more ef-
ficient operating modes in order to save resources and
therefore increase the system’s energy efficiency.
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3 The SEEP Approach
In order to reason about the energy efficiency of pro-
gram code it is required to gain insight into its runtime
behavior. Recently, we have presented results of our re-
search targeting at energy-aware programming [11, 12]
using the SEEP framework which analyzes source code
in a multistep process (see Figure 1) for determining en-
ergy consumption estimates. The framework provides
energy consumption estimates for heterogeneous target
platforms, without the need to execute the program code
on the actual targets.
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Figure 1: The SEEP architecture [11]

SEEP explores source code using symbolic execution
techniques [13, 14]. Possible code paths of the source
code under test are being extracted hereby. Further anal-
yses of the code paths eventually lead to parametrized en-
ergy consumption estimates. To improve program code,
analysis results (i. e., energy consumption estimates) are
used by developers either immediately (,,online”) or re-
sults are used to create energy estimation profiles for later
use (,,offline”). Programming libraries can be augmented
with these energy estimation profiles in order to provide
quick energy consumption estimates at function level and
to shortcut future analysis processes.

4 Energy-Aware Exascale System Software
Developing system software for exascale systems not
only means to create custom-made solutions in terms of
high performance (in all its various facets) as past expe-
rience shows [15, 16], but also asks for energy estimation
mechanisms deeply embedded into the design process of
all software components. Only with such mechanisms
system designers can evaluate consequences of their de-
cisions during programming. Energy hogs revealed by
applying techniques such as SEEP can be resolved by
different measures. Either the application code is being
optimized or restructured in a more energy-efficient way
without sacrificing other mandatory system properties
(e. g., by choosing algorithms which are more energy-
efficient) or the composition of the system as a whole
needs to be reconfigured (e. g., by deploying better suited
operating system components or by exchanging hard-
ware components).

In an iterative process, changes applied to the program
code and the system architecture can be reviewed for ef-
fectiveness. As a result, both program logic and compo-
sition of the system are being optimized for energy effi-
ciency proactively during the time of development. Only
after this process has been carried out, common energy
saving techniques are being applied. These commonly
include static approaches (e. g., compiler optimizations)
and runtime approaches (e. g., dynamic voltage and fre-
quency scaling and hardware sleep states).

5 Applicability

The described SEEP approach is well suited for model
driven software development methods which largely ben-
efit from automated tooling support. Guided by de-
velopers, software models can be refined with the help
of corresponding tools. For distributed computing sce-
narios the approach can be applied to commonly used
HPC computing frameworks (e. g., Open MPI). By aug-
menting the corresponding programming libraries of the
framework with energy consumption indicators, energy
consumption estimates would be available during the
time of creation of HPC applications.

In conjunction with further performance and code
analysis tools developers are supplied with the informa-
tion required to reason about possible trade-offs which
effect performance, portability, and energy consumption.
Even minor modifications of the system can have a ma-
jor impact on the overall system performance as small
energy savings add up and integrate over time. This is
important, as recent advances in semiconductor technol-
ogy and processor design [17] have yielded novel power
characteristics which are important for system develop-
ers. The processor’s operating mode (determined by the
program code) varies by up to a factor of five with regard
to energy efficiency.

6 Conclusion

Being confronted with the sheer complexity of exascale
systems, tooling support for creating energy-efficient
software will be inevitable for developers. Complement-
ing today’s common energy-saving techniques (i. e., run-
time power management, compiler optimizations) we
propose an upstream process which assists developers in
optimizing program code and system structure during the
time of development. Challenges induced by the massive
scale of exascale systems must be answered with holis-
tic approaches such as SEEP, as the problem of creating
energy-aware software needs to be attacked beginning at
the earliest stage of development in order to exploit the
vital knowledge of system developers.
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